Error Recovery Properties and Soft Decoding of Quasi-Arithmetic Codes

نویسندگان

  • Simon Malinowski
  • Hervé Jégou
  • Christine Guillemot
چکیده

This paper first introduces a new set of aggregated state models for soft-input decoding of quasi arithmetic (QA) codes with a termination constraint. The decoding complexity with these models is linear with the sequence length. The aggregation parameter controls the tradeoff between decoding performance and complexity. It is shown that close-to-optimal decoding performance can be obtained with low values of the aggregation parameter, that is, with a complexity which is significantly reduced with respect to optimal QA bit/symbol models. The choice of the aggregation parameter depends on the synchronization recovery properties of the QA codes. This paper thus describes a method to estimate the probability mass function (PMF) of the gain/loss of symbols following a single bit error (i.e., of the difference between the number of encoded and decoded symbols). The entropy of the gain/loss turns out to be the average amount of information conveyed by a length constraint on both the optimal and aggregated state models. This quantity allows us to choose the value of the aggregation parameter that will lead to close-to-optimal decoding performance. It is shown that the optimum position for the length constraint is not the last time instant of the decoding process. This observation leads to the introduction of a new technique for robust decoding of QA codes with redundancy which turns out to outperform techniques based on the concept of forbidden symbol.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soft and Joint Source-Channel Decoding of Quasi-Arithmetic Codes

The issue of robust and joint source-channel decoding of quasi-arithmetic codes is addressed. Quasi-arithmetic coding is a reduced precision and complexity implementation of arithmetic coding. This amounts to approximating the distribution of the source. The approximation of the source distribution leads to the introduction of redundancy that can be exploited for robust decoding in presence of ...

متن کامل

Accumulator Aided Decoding of Low Complexity SISO Arithmetic Codes with Image Transmission Application

In this paper, we address Joint Source-Channel (JSC) decoding with low decoding complexity over wireless channel. We propose a unity rate accumulator based design for soft-input soft-out decoding for low complexity Chase-like decoding of arithmetic codes. Chase-like decoding is a low complexity algorithm, where a maximum a posteriori sequence estimation criterion is employed for maximum likelih...

متن کامل

Soft decoding and synchronization of arithmetic codes: application to image transmission over noisy channels

This paper addresses the issue of robust and joint source-channel decoding of arithmetic codes. We first analyze dependencies between the variables involved in arithmetic coding by means of the Bayesian formalism. This provides a suitable framework for designing a soft decoding algorithm that provides high error-resilience. It also provides a natural setting for "soft synchronization", i.e., to...

متن کامل

Joint source/channel iterative arithmetic decoding with JPEG2000 image transmission application

Motivated by recent results in Joint Source/Channel coding and decoding, we consider the decoding problem of Arithmetic Codes (AC). In fact, in this article we provide different approaches which allow one to unify the arithmetic decoding and error correction tasks. A novel length-constrained arithmetic decoding algorithm based on Maximum A Posteriori sequence estimation is proposed. The latter ...

متن کامل

Soft-decision decoding of Reed-Muller codes as generalized multiple concatenated codes

In this paper, we present a new soft-decision decoding algorithm for Reed-Muller codes. It is based on the GMC decoding algorithm proposed by Schnabl and Bossert [1] which interprets Reed-Muller codes as generalized multiple concatenated codes. We extend the GMC algorithm to list-decoding (L-GMC). As a result, a SDML decoding algorithm for the first order Reed-Muller codes is obtained. Moreover...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008